Bangia atropurpurea (Mertens ex Roth) C. Agardh is a freshwater red alga species that is distributed worldwide. B. atropurpurea is highly adaptable due to its stress-tolerance, which ensures survival under desiccation periods and under radiation extremes typical of the supra- and upper eulittoral zones. Whereas a number of previous investigations addressed some of the physiological and biochemical traits involved in stress-tolerance, we studied the spatial arrangement of the mature (multiseriate) and immature (uniseriate) filaments and of selected bioorganic compounds along a gradient defined by distance from the waterline. Substantial physiological and biochemical differences were previously observed among phenological stages in the marine environment. In this study, we showed a nonrandom spatial structure of both phenological stages and photosynthetic pigments and photoprotective compounds, R-phycocyanin and R-phycoerythrin along the supralittoral-eulittoral gradient. This observed pattern strongly suggests a complex interplay between physio-morphological regulation and spatial arrangement of mature and immature filaments in conferring the typical stress tolerance of B. atropurpurea.

Spitale, D.; Scalfi, A.; Angeli, N.; Cantonati, M. (2012). Fine-Scale Spatial Patterns of Mature and Immature Filaments and Bioorganic Compounds of the Rhodophyte Bangia atropurpurea in the Supra- and Eulittoral Zones of a Large Lake., 48 (6): 1530-1534. doi: 10.1111/j.1529-8817.2012.01180.x

Fine-Scale Spatial Patterns of Mature and Immature Filaments and Bioorganic Compounds of the Rhodophyte Bangia atropurpurea in the Supra- and Eulittoral Zones of a Large Lake

SPITALE, DANIEL;ANGELI, NICOLA;CANTONATI, MARCO
2012-01-01

Abstract

Bangia atropurpurea (Mertens ex Roth) C. Agardh is a freshwater red alga species that is distributed worldwide. B. atropurpurea is highly adaptable due to its stress-tolerance, which ensures survival under desiccation periods and under radiation extremes typical of the supra- and upper eulittoral zones. Whereas a number of previous investigations addressed some of the physiological and biochemical traits involved in stress-tolerance, we studied the spatial arrangement of the mature (multiseriate) and immature (uniseriate) filaments and of selected bioorganic compounds along a gradient defined by distance from the waterline. Substantial physiological and biochemical differences were previously observed among phenological stages in the marine environment. In this study, we showed a nonrandom spatial structure of both phenological stages and photosynthetic pigments and photoprotective compounds, R-phycocyanin and R-phycoerythrin along the supralittoral-eulittoral gradient. This observed pattern strongly suggests a complex interplay between physio-morphological regulation and spatial arrangement of mature and immature filaments in conferring the typical stress tolerance of B. atropurpurea.
Limnologia e Algologia
articolo in rivista
2012
pubblicato
48
6
1530
1534
No
con Impact Factor
si
Spitale, D.; Scalfi, A.; Angeli, N.; Cantonati, M.
Spitale, D.; Scalfi, A.; Angeli, N.; Cantonati, M. (2012). Fine-Scale Spatial Patterns of Mature and Immature Filaments and Bioorganic Compounds of the Rhodophyte Bangia atropurpurea in the Supra- and Eulittoral Zones of a Large Lake., 48 (6): 1530-1534. doi: 10.1111/j.1529-8817.2012.01180.x
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10991/80
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact